Câu 37209 - Tự Học 365
Câu hỏi Thông hiểu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sin 5x}}{{5x}}\,\,\,khi\,\,x e 0\\a + 2\,\,\,\,\,khi\,\,x = 0\end{array} \right.\). Tìm $a$ để hàm số liên tục tại $x = 0.$


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Sử dụng giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\) , xét tính liên tục của hàm số tại $x = 0.$

Xem lời giải

Lời giải của Tự Học 365

Ta có \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 5x}}{{5x}} = 1;\,\,f\left( 0 \right) = a + 2\)

Vậy để hàm số liên tục tại $x = 0$ thì \(a + 2 = 1 \Leftrightarrow a =  - 1\) 

Đáp án cần chọn là: b

Toán Lớp 12