Câu 37203 - Tự Học 365
Câu hỏi Nhận biết

Hàm số \(y = f\left( x \right)\) có đồ thị dưới đây gián đoạn tại điểm có hoành độ bằng bao nhiêu?


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Hàm số \(y = f\left( x \right)\) liên tục tại điểm \(x = {x_0}\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) 

Xem lời giải

Lời giải của Tự Học 365

Quan sát đồ thị ta thấy \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = 3;\,\,\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 0 \) \(\Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) e \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to {1^{}}} f\left( x \right)\). Do đó hàm số gián đoạn tại điểm $x = 1.$

Đáp án cần chọn là: b

Toán Lớp 12