Câu 37214 - Tự Học 365
Câu hỏi Vận dụng

Tìm giá trị thực của tham số \(m\) để ba đường thẳng \(y =  - 5\left( {x + 1} \right)\), \(y = mx + 3\) và \(y = 3x + m\) phân biệt và đồng qui.


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

- Tìm giao điểm của hai đường thẳng bất kì.

- Cho giao điểm này thuộc đường thẳng còn lại tìm \(m\).

Xem lời giải

Lời giải của Tự Học 365

Để ba đường thẳng phân biệt khi \(m e 3\) và \(m e  - 5\).

Tọa độ giao điểm \(B\) của hai đường thẳng \(y = mx + 3\) và \(y = 3x + m\) là nghiệm của hệ \(\left\{ \begin{array}{l}y = mx + 3\\y = 3x + m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3 + m\end{array} \right.\) \( \Rightarrow B\left( {1;3 + m} \right)\)

Để ba đường thẳng đồng quy thì đường thẳng \(y =  - 5\left( {x + 1} \right)\) đi qua \(B\left( {1;3 + m} \right)\)

\( \Rightarrow 3 + m =  - 5\left( {1 + 1} \right) \Leftrightarrow m =  - 13\).

Đáp án cần chọn là: c

Toán Lớp 12