Câu 37227 - Tự Học 365
Câu hỏi Vận dụng

Cho hình chóp $S.ABCD$ có tất cả các cạnh đều bằng $\;a$. Gọi $I$ và $J$ lần lượt là trung điểm của $SC$ và $BC$. Số đo của góc $\left( {IJ,\;CD} \right)$ bằng:


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Dựa vào mối quan hệ song song và các kiến thức hình học đã biết để tính góc giữa \(IJ\) và \(CD\).

Xem lời giải

Lời giải của Tự Học 365

Gọi \(O\) là tâm của hình thoi \(ABCD \Rightarrow \)\(OJ\) là đường trung bình của \(\Delta BCD.\)

Suy ra \(\left\{ \begin{array}{l}OJ\,\parallel \,CD\\OJ = \dfrac{1}{2}CD\end{array} \right.\).

Vì \(CD\,\parallel \,OJ \Rightarrow \left( {IJ,CD} \right) = \left( {IJ,OJ} \right)\).

Xét tam giác $IOJ$, có \(\left\{ \begin{array}{l}IJ = \dfrac{1}{2}SB = \dfrac{a}{2}\\OJ = \dfrac{1}{2}CD = \dfrac{a}{2}\\IO = \dfrac{1}{2}SA = \dfrac{a}{2}\end{array} \right.\) $ \Rightarrow \Delta IOJ$ đều.

Vậy \(\left( {IJ,CD} \right) = \left( {IJ,OJ} \right) = \widehat {IJO} = 60^\circ \).

Đáp án cần chọn là: d

Toán Lớp 12