Trong không gian cho tam giác \(ABC\). Tìm \(M\) sao cho giá trị của biểu thức \(P = M{A^2} + M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất.
Phương pháp giải
Đưa biểu thức \(P\) về biểu thức có chứa véc tơ và sử dụng tính chất các điểm đặc biệt để tìm GTNN của \(P\).
Lời giải của Tự Học 365
Gọi \(G\) là trọng tâm tam giác \(ABC \Rightarrow G\) cố định và $\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 .$
\(P = {\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)^2}\)
\( = 3M{G^2} + 2\overrightarrow {MG} .\left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) + G{A^2} + G{B^2} + G{C^2}\)
\( = 3M{G^2} + G{A^2} + G{B^2} + G{C^2} \ge G{A^2} + G{B^2} + G{C^2}.\)
Dấu bằng xảy ra \( \Leftrightarrow M \equiv G.\)
Vậy \({P_{\min }} = G{A^2} + G{B^2} + G{C^2}\) với \(M \equiv G\) là trọng tâm tam giác \(ABC.\)
Đáp án cần chọn là: a
Toán Lớp 12