Câu 37209 - Tự Học 365
Câu hỏi Vận dụng

Cho hình lập phương $ABCD.EFGH$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AF} \) và \(\overrightarrow {EG} \)?


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

- Biểu diễn các véc tơ \(\overrightarrow {AF} ,\overrightarrow {EG} \) qua ba véc tơ \(\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} \).

- Tính tích có hướng \(\overrightarrow {AF} .\overrightarrow {EG} \) rồi suy ra giá trị \(\cos \left( {\overrightarrow {AF} ,\overrightarrow {EG} } \right) = \dfrac{{\overrightarrow {AF} .\overrightarrow {EG} }}{{\left| {\overrightarrow {AF} } \right|.\left| {\overrightarrow {EG} } \right|}}\)

Xem lời giải

Lời giải của Tự Học 365

Ta có:

\(\begin{array}{l}\overrightarrow {AF}  = \overrightarrow {AB}  + \overrightarrow {AE} \\\overrightarrow {EG}  = \overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} \\ \Rightarrow \overrightarrow {AF} .\overrightarrow {EG}  = \left( {\overrightarrow {AB}  + \overrightarrow {AE} } \right).\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) = A{B^2} + \overrightarrow {AE} .\overrightarrow {AB}  + \overrightarrow {AB} .\overrightarrow {AD}  + \overrightarrow {AE} .\overrightarrow {AD}  = A{B^2}\\ \Rightarrow \cos \left( {\overrightarrow {AF} ,\overrightarrow {EG} } \right) = \dfrac{{\overrightarrow {AF} .\overrightarrow {EG} }}{{\left| {\overrightarrow {AF} } \right|.\left| {\overrightarrow {EG} } \right|}} = \dfrac{{{a^2}}}{{a\sqrt 2 .a\sqrt 2 }} = \dfrac{1}{2} \Rightarrow \widehat {\left( {\overrightarrow {AF} ,\overrightarrow {EG} } \right)} = {60^0}\end{array}\)

Đáp án cần chọn là: b

Toán Lớp 12