Câu 37213 - Tự Học 365
Câu hỏi Vận dụng

Cho tứ diện \(ABCD.\) Gọi \(M,{\rm{ }}N\) lần lượt là trung điểm của \(AB\) và \(CD.\) Mặt phẳng \(\left( \alpha  \right)\) qua \(MN\) cắt \(AD,{\rm{ }}BC\) lần lượt tại \(P\) và \(Q.\) Biết \(MP\) cắt \(NQ\) tại \(I.\) Ba điểm nào sau đây thẳng hàng?


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

- Tìm \(d = \left( {ABD} \right) \cap \left( {BCD} \right)\)

- Chứng minh \(I \in \left( {ABD} \right);I \in \left( {BCD} \right) \Rightarrow I \in \left( {ABD} \right) \cap \left( {BCD} \right) = d\)

Xem lời giải

Lời giải của Tự Học 365

Ta có \(\left( {ABD} \right) \cap \left( {BCD} \right) = BD\).

Lại có \(\left\{ \begin{array}{l}I \in MP \subset \left( {ABD} \right)\\I \in NQ \subset \left( {BCD} \right)\end{array} \right. \Rightarrow I\) thuộc giao tuyến của \(\left( {ABD} \right)\) và \(\left( {BCD} \right)\)

\( \Rightarrow I \in BD \Rightarrow I,{\rm{ }}B,{\rm{ }}D\) thẳng hàng. 

Đáp án cần chọn là: b

Toán Lớp 12