Câu 37228 - Tự Học 365
Câu hỏi Vận dụng cao

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a.$ Cạnh bên $SA = x$ và vuông góc với mặt phẳng $\left( {ABCD} \right).$ Xác định $x$ để hai mặt phẳng $\left( {SBC} \right)$ và $\left( {SCD} \right)$ tạo với nhau một góc ${60^0}.$


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Sử dụng phương pháp xác định góc giữa hai mặt phẳng và áp dụng các hệ thức lượng trong tam giác vuông

Xem lời giải

Lời giải của Tự Học 365

Từ $A$  kẻ $AH$ vuông góc với $SB\,\,\,\,\left( {H \in SB} \right).$

Ta có $\left\{ \begin{array}{l}SA \bot BC\\AB \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH$ mà $AH \bot SB$ suy ra $AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC$

Từ A kẻ AK vuông góc với $SD\,\,\,\left( {K \in SD} \right),$ tương tự, chứng minh được $AK \bot \left( {SCD} \right) \Rightarrow AK \bot SC$

Khi đó $SC \bot \left( {AHK} \right)$ suy ra

$\widehat {\left( {\left( {SBC} \right);\left( {SCD} \right)} \right)} = \widehat {\left( {AH;AK} \right)} = \widehat {HAK} = {60^0}.$

Lại có $\Delta \,SAB = \Delta \,SAD\,\,\left( {c.g.c} \right) \Rightarrow AH = AK$ mà $\widehat {HAK} = {60^0}$ suy ra tam giác AHK đều.

Tam giác SAB vuông tại A có $\dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} = \dfrac{1}{{{x^2}}} + \dfrac{1}{{{a^2}}} \Rightarrow AH = \dfrac{{xa}}{{\sqrt {{x^2} + {a^2}} }} = AK = HK$

Suy ra $SH = \sqrt {S{A^2} - A{H^2}}  = \sqrt {{x^2} - \dfrac{{{x^2}{a^2}}}{{{x^2} + {a^2}}}}  = \dfrac{{{x^2}}}{{\sqrt {{x^2} + {a^2}} }} \Rightarrow \dfrac{{SH}}{{SB}} = \dfrac{{{x^2}}}{{{x^2} + {a^2}}}.$

Tương tự ta chứng minh được \(\dfrac{{SK}}{{SC}} = \dfrac{{{x^2}}}{{{x^2} + {a^2}}}\)

$ \Rightarrow HK$//$BD$ suy ra $\dfrac{{SH}}{{SB}} = \dfrac{{HK}}{{BD}} \Leftrightarrow \dfrac{{{x^2}}}{{{x^2} + {a^2}}} = \dfrac{{xa}}{{\sqrt {{x^2} + {a^2}} .a\sqrt 2 }} \Leftrightarrow \dfrac{x}{{\sqrt {{x^2} + {a^2}} }} = \dfrac{1}{{\sqrt 2 }} \Leftrightarrow 2{x^2} = {x^2} + {a^2} \Rightarrow x = a.$

Đáp án cần chọn là: c

Toán Lớp 12