Câu 37218 - Tự Học 365
Câu hỏi Thông hiểu

Cho hình chóp đều $S.ABCD$ có tất cả các cạnh đều bằng $a$. Gọi $\varphi $ là góc giữa hai mặt phẳng $\left( {SBD} \right)$ và $\left( {SCD} \right)$. Mệnh đề nào sau đây đúng?


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Sử dụng phương pháp xác định góc giữa hai mặt phẳng và áp dụng các hệ thức lượng trong tam giác vuông

Xem lời giải

Lời giải của Tự Học 365

Gọi $O = AC \cap BD$. Do hình chóp $S.ABCD$ đều nên $SO \bot \left( {ABCD} \right)$.

Gọi $M$ là trung điểm của $SD.$ Tam giác $SCD$ đều nên $CM \bot SD$.

Tam giác $SBD$ có $SB = SD = a,$ $BD = a\sqrt 2 $

Suy ra $\Delta \,SBD$ vuông tại $S \Rightarrow SB \bot SD \Rightarrow OM \bot SD.$

Do đó

$\left\{ \begin{array}{l}\left( {SBD} \right) \cap \left( {SCD} \right) = SD\\\left( {SBD} \right) \supset OM \bot SD\\\left( {SCD} \right) \supset CM \bot SD\end{array} \right. \Rightarrow \widehat {\left( {\left( {SBD} \right);\left( {SCD} \right)} \right)} = \widehat {\left( {OM;CM} \right)} = \widehat {OMC}.$

Ta có $\left\{ \begin{array}{l}OC \bot BD\\OC \bot SO\end{array} \right. \Rightarrow OC \bot \left( {SBD} \right) \Rightarrow OC \bot OM$.

Tam giác vuông MOC vuông tại O, có $\tan \widehat {CMO} = \dfrac{{OC}}{{OM}} = \dfrac{{\dfrac{1}{2}a\sqrt 2 }}{{\dfrac{1}{2}a}} = \sqrt 2 $.

Đáp án cần chọn là: d

Toán Lớp 12