\(A = \cos \left( {\alpha + 26\pi } \right) - \cos (\alpha - 7\pi ) \) \(- \cos (\alpha - 1,5\pi ) - \cos \left( {\alpha + 2003\dfrac{\pi }{2}} \right) \) \(+ \cos \left( {\alpha - 1,5\pi } \right).\cot (\alpha - 8\pi )\)
có kết quả thu gọn là
Phương pháp giải
"/lop-10/chi-tiet-ly-thuyet-gia-tri-luong-giac-cua-cac-goc-co-lien-quan-dac-biet-5b207a8db6cebe98e4cd967f.html#c1">Sử dụng bảng giá trị lượng giác của các góc có mối liên quan đặc biệt
Lời giải của Tự Học 365
$A = \cos \left( {\alpha + 26\pi } \right) - \cos (\alpha - 7\pi )$ $- \cos (\alpha - 1,5\pi ) - \cos \left( {\alpha + 2003\dfrac{\pi }{2}} \right) $ $+ \cos \left( {\alpha - 1,5\pi } \right).\cot (\alpha - 8\pi )$
$= \cos (\alpha + 13.2\pi ) - \cos (\alpha - \pi - 2.3\pi )$ $- \cos (\alpha - \dfrac{\pi }{2} - \pi ) - \cos \left( {\alpha - \dfrac{\pi }{2} + 1002\pi } \right) $ $+ \cos \left( {\alpha - \dfrac{\pi }{2} - \pi } \right).\cot (\alpha - 4.2\pi )$
$= \cos \alpha - \cos \left( {\alpha - \pi } \right) + \sin \alpha $ $- \cos \left( {\alpha - \dfrac{\pi }{2}} \right) - \cos \left( {\alpha - \dfrac{\pi }{2}} \right).\cot \alpha $
$= \cos \alpha + \cos \alpha + \sin \alpha $ $- \sin \alpha - \sin \alpha .\cot \alpha $ $= \cos \alpha $
Đáp án cần chọn là: d
Toán Lớp 12