Câu 37202 - Tự Học 365
Câu hỏi Vận dụng

Lập phương trình chính tắc của elip $\left( E \right).$ Hình chữ nhật cơ sở của $\left( E \right)$ có một cạnh nằm trên đường thẳng $x - 2 = 0$ và có độ dài đường chéo bằng \(12\).


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

- Xác định \(a,b\) từ các điều kiện bài cho.

- Viết phương trình elip \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).

Xem lời giải

Lời giải của Tự Học 365

Phương trình chính tắc của elip có dạng $\left( E \right):\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1{\rm{  }}\left( {a,b > 0} \right)$.

Do một cạnh của hình chữ nhật cơ sở thuộc đường thẳng $x - 2 = 0$ nên có \(a = 2\).

Mặt khác \({(2a)^2} + {(2b)^2} = {12^2} \Leftrightarrow {b^2} = 32\)\( \Leftrightarrow b = 4\sqrt 2 \)

Vậy phương trình Elip là \(\dfrac{{{x^2}}}{4} + \dfrac{{{y^2}}}{{32}} = 1\).

Đáp án cần chọn là: b

Toán Lớp 12