Cho elip (E) có tiêu cự là \(2c\), độ dài trục lớn và trục nhỏ lần lượt là \(2a\) và \(2b\). Trong các mệnh đề sau, mệnh đề nào đúng?
Phương pháp giải
Áp dụng lý thuyết phương trình chính tắc của elip.
Phương trình chính tắc của elip có dạng \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) và \({a^2} = {b^2} + {c^2}\) với \(2c\) là tiêu cự của (E).
Lời giải của Tự Học 365
Vì \({a^2} = {b^2} + {c^2}\) và \(a,b,c > 0\) nên ta có \({a^2} > {c^2} \Leftrightarrow a > c\). Hiển nhiên \(b < a\)
Đáp án cần chọn là: d
Toán Lớp 12