Cho tứ diện \(ABCD.\) Gọi \(H\) là trực tâm của tam giác \(BCD\) và \(AH\) vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là đúng ?
Phương pháp giải
Xét tính đúng sai của từng đáp án, sử dụng lý thuyết đường thẳng vuông góc với mặt phẳng thì nó vuông góc với mọi đường thẳng thuộc mặt phẳng và ngược lại.
Lời giải của Tự Học 365

Vì \(AH\) vuông góc với \(mp\,\,\left( {BCD} \right)\) suy ra \(AH \bot CD.\) \(\left( 1 \right)\)
Mà \(H\) là trực tâm của tam giác \(BCD\)\( \Rightarrow \,\,BH \bot CD.\) \(\left( 2 \right)\)
Từ \(\left( 1 \right),\left( 2 \right)\) suy ra \(\left\{ \begin{array}{l}CD \bot AH\\CD \bot BH\end{array} \right. \Rightarrow CD \bot \left( {ABH} \right) \Rightarrow CD \bot AB.\)
Đáp án cần chọn là: d
Toán Lớp 12