Câu 37224 - Tự Học 365
Câu hỏi Vận dụng

Cho hình chóp $S.ABCD$ có đáy $ABCD $ là hình bình hành. \(Mp\left( \alpha  \right)\) qua $BD$ và song song với $SA$ cắt $SC$ tại $K.$ Chọn khẳng định đúng?


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

- Tính chất đường thẳng song song với mặt phẳng.

- Định lí đường trung bình của tam giác.

Xem lời giải

Lời giải của Tự Học 365

Gọi $O$ là giao điểm của $AC$ và $BD$

Trong mặt phẳng $SAC,$ qua $O$ kẻ ${\rm{O}}K \bot AC\,\,\left( {K \in SC} \right)$, suy ra $mp$\(\left( \alpha  \right)\) chính là $mp(BDK).$

$OK // SA ; AO = OC$\( \Rightarrow \) $SK = KC.$ (Định lí đường trung bình của tam giác)

Đáp án cần chọn là: c

Toán Lớp 12