Câu 37214 - Tự Học 365
Câu hỏi Thông hiểu

Cho hai dãy số \(\left( {{x_n}} \right)\) với \({x_n} = \dfrac{{\left( {n + 1} \right)!}}{{{2^n}}}\)  và \(\left( {{y_n}} \right)\) với \({y_n} = n + {\sin ^2}\left( {n + 1} \right)\) . Mệnh đề nào dưới đây là đúng?


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Xét tính tăng giảm của từng dãy số.

Đối với dãy \(\left( {{x_n}} \right)\) , ta xét thương \(\dfrac{{{x_{n + 1}}}}{{{x_n}}}\) và so sánh thương đó với 1.

Đối với dãy \(\left( {{y_n}} \right)\) ta xét hiệu \({y_{n + 1}} - {y_n}\) và so sánh hiệu đó với 0.

Xem lời giải

Lời giải của Tự Học 365

Xét thương : \(\dfrac{{{x_{n + 1}}}}{{{x_n}}} = \dfrac{{\dfrac{{\left( {n + 2} \right)!}}{{{2^{n + 1}}}}}}{{\dfrac{{\left( {n + 1} \right)!}}{{{2^n}}}}} = \dfrac{{\left( {n + 2} \right)!}}{{{2^{n + 1}}}}.\dfrac{{{2^n}}}{{\left( {n + 1} \right)!}} = \dfrac{{n + 2}}{2} = \dfrac{n}{2} + 1 > 1\,\,\forall n \ge 1 \Rightarrow {x_{n + 1}} > {x_n} \Rightarrow \left( {{x_n}} \right)\) là dãy tăng.

Xét hiệu

\({y_{n + 1}} - {y_n} =\) \( \left( {n + 1} \right) + {\sin ^2}\left( {n + 2} \right) - n - {\sin ^2}\left( {n + 1} \right) \) \(= {\sin ^2}\left( {n + 2} \right) - {\sin ^2}\left( {n + 1} \right) + 1 > 0\,\,\forall n \ge 1 \Rightarrow {y_{n + 1}} > {y_n}\)

Do đó \(\left( {{y_n}} \right)\) là dãy tăng.

Đáp án cần chọn là: d

Toán Lớp 12