Cho dãy số \(\left( {{x_n}} \right)\) xác định bởi \({x_1} = 5\) và \({x_{n + 1}} = {x_n} + n,\,\,\forall n \in N^*\). Số hạng tổng quát của dãy số \(\left( {{x_n}} \right)\) là:
Phương pháp giải
Tính một vài số hạng đầu tiên của dãy số.
Dự đoán số hạng tổng quát và chứng minh số hạng tổng quát đó đúng bằng phương pháp quy nạp
Lời giải của Tự Học 365
\(\begin{array}{l}{x_1} = 5\\{x_2} = {x_1} + 1 = 5 + 1\\{x_3} = {x_2} + 2 = 5 + 1 + 2\\{x_4} = {x_3} + 3 = 5 + 1 + 2 + 3\\...\end{array}\)
Dự đoán \({x_n} = 5 + 1 + 2 + 3 + ... + n - 1 = 5 + \dfrac{{n\left( {n - 1} \right)}}{2}\,\,\,\left( * \right)\,\,\forall n \in N^*\)
Chứng minh bằng phương pháp quy nạp.
Dễ thấy, $(*)$ đúng với $n = 1$.
Giả sử $(*)$ đúng đến $n = k (k\ge 1),$ tức là \({x_k} = 5 + \dfrac{{k\left( {k - 1} \right)}}{2}\,,\) ta chứng minh $(*)$ đúng đến $n = k + 1,$ tức là cần chứng minh \({x_{k + 1}} = 5 + \dfrac{{\left( {k + 1} \right)k}}{2}\).
Ta có: \({x_{k + 1}} = {x_k} + k = 5 + \dfrac{{k\left( {k - 1} \right)}}{2}\, + k = 5 + \dfrac{{k\left( {k - 1} \right) + 2k}}{2} = 5 + \dfrac{{k\left( {k - 1 + 2} \right)}}{2} = 5 + \dfrac{{\left( {k + 1} \right)k}}{2}\)
Vậy $(*)$ đúng với mọi \(n \in N^*\).
Vậy \({x_n} = 5 + \dfrac{{n\left( {n - 1} \right)}}{2} = \dfrac{{{n^2} - n + 10}}{2},\forall n \in N^*\)
Đáp án cần chọn là: a
Toán Lớp 12