Câu 37209 - Tự Học 365
Câu hỏi Thông hiểu

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \({u_1} = \dfrac{1}{2}\)  và \({u_n} = {u_{n - 1}} + 2n\)  với mọi \(n \ge 2\). Khi đó \({u_{50}}\) bằng:


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Dự đoán và chứng minh số hạng tổng quát bằng phương pháp quy nạp toán học sau đó tìm số hạng thứ 50.

Xem lời giải

Lời giải của Tự Học 365

Ta có: \({u_1} = \dfrac{1}{2}\)

$\begin{array}{l}{u_2} = {u_1} + 2.2 = \dfrac{1}{2} + 4 = \dfrac{1}{2} + 2.2\\{u_3} = {u_2} + 2.3 = \dfrac{1}{2} + 4 + 6 = \dfrac{1}{2} + 2\left( {2 + 3} \right)\\{u_4} = {u_3} + 2.4 = \dfrac{1}{2} + 4 + 6 + 8 = \dfrac{1}{2} + 2\left( {2 + 3 + 4} \right)\\...\end{array}$

Dự đoán số hạng tổng quát \({u_n} = \dfrac{1}{2} + 2\left( {2 + 3 + ... + n} \right)\,\,\,\,\,\left( * \right)\,\,\forall n \ge 2\)

Chứng minh bằng quy nạp:

Dễ thấy $(*)$ đúng với $n = 2.$

Giả sử $(*)$ đúng đến \(n = k \ge 2\) , tức là \({u_k} = \dfrac{1}{2} + 2\left( {2 + 3 + ... + k} \right)\), ta chứng minh $(*)$ đúng đến $n = k + 1,$ tức là cần chứng minh \({u_{k + 1}} = \dfrac{1}{2} + 2\left( {2 + 3 + ... + k + 1} \right)\)

Ta có: \({u_{k + 1}} = {u_k} + 2\left( {k + 1} \right) = \dfrac{1}{2} + 2\left( {2 + 3 + ... + k} \right) + 2\left( {k + 1} \right) = \dfrac{1}{2} + 2\left( {2 + 3 + ... + k + k + 1} \right)\)

Vậy $(*)$ đúng với mọi \(n \ge 2\).

Mặt khác ta có \(1 + 2 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2} \) \(\Leftrightarrow 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2} - 1\)

Khi đó số hạng \({u_{50}} = \dfrac{1}{2} + 2\left( {2 + 3 + ... + 50} \right) = \dfrac{1}{2} + 2\left( {\dfrac{{50.51}}{2} - 1} \right) = 2548,5\)

Đáp án cần chọn là: b

Toán Lớp 12