Câu 37201 - Tự Học 365
Câu hỏi Vận dụng cao

Có bao nhiêu giá trị $m$ nguyên âm để mọi $x > 0$ đều thoả bất phương trình ${\left( {{x^2} + x + m} \right)^2} \ge {\left( {{x^2} - 3x - m} \right)^2}$?


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

- Biến đổi bất phương trình về dạng tích.

- Chia thành các trường hợp để xét dấu vế trái của bất phương trình.

Xem lời giải

Lời giải của Tự Học 365

Ta có ${\left( {{x^2} + x + m} \right)^2} \ge {\left( {{x^2} - 3x - m} \right)^2} \Leftrightarrow {\left( {{x^2} + x + m} \right)^2} - {\left( {{x^2} - 3x - m} \right)^2} \ge 0$

$ \Leftrightarrow 4x\left( {2x + m} \right)\left( {x - 1} \right) \ge 0$

Với \(m < 0\) ta có bảng xét dấu

TH1: \( - \dfrac{m}{2} \ge 1\)

Từ Bảng xét dấu ta thấy để BPT nghiệm đúng với \(x > 0\) thì \( - \dfrac{m}{2} = 1 \Leftrightarrow m =  - 2\)

TH 2: \( - \dfrac{m}{2} < 1\)

Từ Bảng xét dấu ta thấy để BPT nghiệm đúng với \(x > 0\) thì \( - \dfrac{m}{2} = 1 \Leftrightarrow m =  - 2\)

Vậy có 1 giá trị

Đáp án cần chọn là: b

Toán Lớp 12