Tập nghiệm của hệ bất phương trình $\left\{ \begin{array}{l}{x^2} - 4x + 3 > 0\\{x^2} - 6x + 8 > 0\end{array} \right.$ là
Phương pháp giải
Sủ dụng định lý dấu của tam thức bậc hai để xét dấu từng tam thức rồi suy ra \(x\)
Lời giải của Tự Học 365
Ta có: \(\left\{ \begin{array}{l}{x^2} - 4x + 3 > 0\\{x^2} - 6x + 8 > 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x < 1\\x > 3\end{array} \right.\\\left[ \begin{array}{l}x < 2\\x > 4\end{array} \right.\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x < 1\\x < 2\end{array} \right.\\\left\{ \begin{array}{l}x < 1\\x > 4\end{array} \right.\left( {VN} \right)\\\left\{ \begin{array}{l}x > 3\\x < 2\end{array} \right.\left( {VN} \right)\\\left\{ \begin{array}{l}x > 3\\x > 4\end{array} \right.\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x < 1\\x > 4\end{array} \right.\).
Đáp án cần chọn là: b
Toán Lớp 12