Câu 37205 - Tự Học 365
Câu hỏi Vận dụng

Hỏi có bao nhiêu giá trị nguyên $x$ thỏa mãn bất phương trình $\left| {\dfrac{{2 - x}}{{x + 1}}} \right| \ge 2$ ?


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Bất phương trình \(\left| {f\left( x \right)} \right| \ge m \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) \ge m\\f\left( x \right) \le  - m\end{array} \right.\) với \(m > 0\)

Xem lời giải

Lời giải của Tự Học 365

Điều kiện: $x + 1 e 0 \Leftrightarrow x e  - \,1.$

Bất phương trình $\left| {\dfrac{{2 - x}}{{x + 1}}} \right| \ge 2 \Leftrightarrow \left[ \begin{array}{l}\dfrac{{2 - x}}{{x + 1}} \ge 2\\\dfrac{{2 - x}}{{x + 1}} \le  - 2\end{array} \right.$$ \Leftrightarrow \left[ \begin{array}{l}\dfrac{{2 - x}}{{x + 1}} - 2 \ge 0\\\dfrac{{2 - x}}{{x + 1}} + 2 \le 0\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l} - \dfrac{{3x}}{{x + 1}} \ge 0\,\,\,\,\,\left( 1 \right)\\\dfrac{{4 + x}}{{x + 1}} \le 0\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.$

Giải $\left( 1 \right),$ ta có bất phương trình $\left( 1 \right) \Leftrightarrow \dfrac{x}{{x + 1}} \le 0 \Leftrightarrow  - \,1 < x \le 0.$

Giải $\left( 2 \right),$ ta có bất phương trình $\left( 2 \right) \Leftrightarrow  - \,4 \le x <  - \,1.$

Do đó, tập nghiệm của bất phương trình là $S = \left[ { - \,4; - \,1} \right) \cup \left( { - \,1;0} \right].$

Vậy có tất cả $4$ giá trị nguyên $x$ cần tìm là $x = \left\{ { - \,4; - \,3; - \,2;0} \right\}.$

Đáp án cần chọn là: b

Toán Lớp 12