Câu 37224 - Tự Học 365
Câu hỏi Thông hiểu

Cho biểu thức \(f\left( x \right) = \dfrac{{2 - x}}{{x + 1}} + 2.\) Tập hợp tất cả các giá trị của \(x\) thỏa mãn bất phương trình \(f\left( x \right) < 0\) là


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

- Rút gọn \(f\left( x \right)\) đưa \(f\left( x \right)\) về dạng thương của các nhị thức bậc nhất.

- Xét dấu các nhị thức bậc nhất đó rồi suy ra dấu của \(f\left( x \right)\).

Xem lời giải

Lời giải của Tự Học 365

- Ta có $f\left( x \right) = \dfrac{{2 - x}}{{x + 1}} + 2 = \dfrac{{2 - x + 2\left( {x + 1} \right)}}{{x + 1}} = \dfrac{{x + 4}}{{x + 1}}.$

Phương trình $x + 4 = 0 \Leftrightarrow x =  - \,4$ và $x + 1 = 0 \Leftrightarrow x =  - \,1.$

- Bảng xét dấu

Dựa vào bảng xét dấu, ta thấy rằng $f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \,4; - \,1} \right).$

Đáp án cần chọn là: c

Toán Lớp 12