Câu 37210 - Tự Học 365
Câu hỏi Vận dụng

Cho $z$ là số phức thỏa mãn \(z + \dfrac{1}{z} = 1\). Tính giá trị của \({z^{2017}} + \dfrac{1}{{{z^{2017}}}}\)


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

- Giải phương trình tìm các nghiệm \({z_1},{z_2}\)

- Đưa \({z_1},{z_2}\) về dạng lượng giác và sử dụng công thức Moivre để tính giá trị biểu thức.

Xem lời giải

Lời giải của Tự Học 365

Ta thấy \(z + \dfrac{1}{z} = 1 \Leftrightarrow {z^2} - z + 1 = 0 \Rightarrow z = \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\) 

Ta chỉ cần lấy 1 nghiệm do \({z_1}.{z_2} = 1\) và vai trò của \({z_1}\) và \({z_2}\) trong biểu thức \({z^{2017}} + \frac{1}{{{z^{2017}}}}\) là như nhau.

Lại có: \(z = \cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3} \Rightarrow {z^{2017}} = \cos \dfrac{{2017.\pi }}{3} + i\sin \dfrac{{2017.\pi }}{3} = \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\)

Suy ra \(\dfrac{1}{{{z^{2017}}}} = \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}i\)

Đáp án cần chọn là: c

Toán Lớp 12