Câu 37210 - Tự Học 365
Câu hỏi Thông hiểu

Cho 4 điểm không đồng phẳng $A,\,\,B,\,\,C,\,\,D.$ Gọi $I,\,\,K$ lần lượt là trung điểm của $AD$ và $BC.$ Giao tuyến của $\left( {IBC} \right)$ và $\left( {KAD} \right)$ là:


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

- Chứng minh \(I,K\) thuộc cả hai mặt phẳng, từ đó suy ra \(IK\) là giao tuyến.

Xem lời giải

Lời giải của Tự Học 365

Điểm $K$ là trung điểm của $BC$ suy ra $K \in \left( {IBC} \right)\,\, \Rightarrow \,\,IK \subset \left( {IBC} \right).$

Điểm $I$ là trung điểm của $AD$ suy ra $I \in \left( {KAD} \right)\,\, \Rightarrow \,\,IK \subset \left( {KAD} \right).$

Vậy giao tuyến của hai mặt phẳng  $\left( {IBC} \right)$ và $\left( {KAD} \right)$ là $IK.$

Đáp án cần chọn là: a

Toán Lớp 12