Câu 37206 - Tự Học 365
Câu hỏi Vận dụng

Cho tứ diện \(ABCD.\) Gọi \(M,{\rm{ }}N\) lần lượt là trung điểm của \(AC,{\rm{ }}CD.\) Giao tuyến của hai mặt phẳng \(\left( {MBD} \right)\) và \(\left( {ABN} \right)\) là:


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

- Tìm một điểm chung dễ thấy của hai mặt phẳng.

- Tìm điểm chung thứ hai bằng cách tìm hai đường thẳng lần lượt thuộc hai mặt phẳng mà chúng cắt nhau.

Xem lời giải

Lời giải của Tự Học 365

\( \bullet \) \(B\) là điểm chung thứ nhất giữa hai mặt phẳng \(\left( {MBD} \right)\) và \(\left( {ABN} \right).\)

\( \bullet \) Vì \(M,N\) lần lượt là trung điểm của \(AC,{\rm{ }}CD\) nên suy ra \(AN,{\rm{ }}DM\) là hai trung tuyến của tam giác \(ACD.\) Gọi \(G = AN \cap DM\)

\( \Rightarrow \left\{ \begin{array}{l}G \in AN \subset \left( {ABN} \right) \Rightarrow G \in \left( {ABN} \right)\\G \in DM \subset \left( {MBD} \right) \Rightarrow G \in \left( {MBD} \right)\end{array} \right. \Rightarrow G\) là điểm chung thứ hai giữa hai mặt phẳng \(\left( {MBD} \right)\) và \(\left( {ABN} \right).\)

Vậy \(\left( {ABN} \right) \cap \left( {MBD} \right) = BG.\)

Đáp án cần chọn là: c

Toán Lớp 12