Tìm tập xác định của bất phương trình $\sqrt {\dfrac{{x - 1}}{{{{\left( {x + 2} \right)}^2}}}} < x + 1.$
Phương pháp giải
- Biểu thức \(\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\) xác định nếu \(g\left( x \right) e 0\).
- Biểu thức \(\sqrt {f\left( x \right)} \) xác định nếu \(f\left( x \right) \ge 0\).
Lời giải của Tự Học 365
Bất phương trình xác định khi \(\left\{ \begin{array}{l}\dfrac{{x - 1}}{{{{\left( {x + 2} \right)}^2}}} \ge 0\\x + 2 e 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 1 \ge 0\\x + 2 e 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\x e - 2\end{array} \right. \Leftrightarrow x \ge 1\)
Đáp án cần chọn là: a
Toán Lớp 12