Câu 37226 - Tự Học 365
Câu hỏi Vận dụng

Tính tổng \({S_n} = 1 + 11 + 111 + ... + 11...11\) (có $10$ chữ số $1$)


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

- Biến đổi các số hạng của tổng thành dạng \(\dfrac{{{{10}^n} - 1}}{9}\).

- Áp dụng công thức tính tổng \(n\) số hạng đầu của cấp số nhân để tính tổng đã cho.

Xem lời giải

Lời giải của Tự Học 365

Ta có

 \(\begin{array}{l}{S_n} = \dfrac{{10 - 1}}{9} + \dfrac{{{{10}^2} - 1}}{9} + \dfrac{{{{10}^3} - 1}}{9} + ... + \dfrac{{{{10}^{10}} - 1}}{9} = \dfrac{1}{9}\left( {10 + {{10}^2} + ... + {{10}^{10}}} \right) - \dfrac{{10}}{9}\\ = \dfrac{1}{9}\left( {10.\dfrac{{{{10}^{10}} - 1}}{9}} \right) - \dfrac{{10}}{9} = \dfrac{{{{10}^{11}} - 10 - 90}}{{81}} = \dfrac{{{{10}^{11}} - 100}}{{81}}\end{array}\) 

Đáp án cần chọn là: a

Toán Lớp 12