Cho hai mặt phẳng $\left( P \right)$ và $\left( Q \right)$ lần lượt có phương trình $x + 2y - 2z + 1 = 0$ và $x - 2y + 2z - 1 = 0$. Gọi $\left( S \right)$ là quỹ tích các điểm cách đều hai mặt phẳng $\left( P \right)$ và $\left( Q \right)$. Tìm khẳng định đúng.
Phương pháp giải
- Gọi \(M\left( {x;y;z} \right)\) là điểm cách đều hai mặt phẳng.
- Thay vào công thức tính khoảng cách từ \(M\) đến hai mặt phẳng rồi từ điều kiện bài cho tìm mối quan hệ \(x,y,z \Rightarrow \) đáp án.
Lời giải của Tự Học 365
Giả sử $M\left( {x,y,z} \right)$ là điểm cách đều hai mặt phẳng $\left( P \right)$ và $\left( Q \right)$. Ta có
\(\begin{array}{l}\dfrac{{|x + 2y - 2z + 1|}}{3} = \dfrac{{|x - 2y + 2z - 1|}}{3}\\ \Leftrightarrow |x + 2y - 2z + 1| = |x - 2y + 2z - 1|\\ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x + 2y - 2z + 1 = x - 2y + 2z - 1}\\{x + 2y - 2z + 1 = - (x - 2y + 2z - 1)}\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{4y - 4z + 2 = 0}\\{2x = 0}\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2y - 2z + 1 = 0}\\{x = 0}\end{array}} \right.\end{array}\)
Đáp án cần chọn là: d
Toán Lớp 12