Câu 37218 - Tự Học 365
Câu hỏi Vận dụng

Trong không gian Oxyz, cho ba mặt phẳng \(\left( P \right):\,\,x+y-3z+1=0;\,\,\left( Q \right):\,\,2x+3y+z-1=0\); \(\left( R \right):\,\,x+2y+4z-2=0\). Xét mặt phẳng (T) chứa giao tuyến của hai mặt phẳng (P) và (Q), có $\overrightarrow {{n_{\left( T \right)}}} = \left( {1;a;b} \right)$ và tạo với mặt phẳng (R) một góc \(\alpha \). Biết \(\cos \alpha =\dfrac{23}{\sqrt{679}}\) có phương trình:


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

+) Viết phương trình \(\left( \Delta  \right)\) là giao tuyến của (P) và (Q)

+) \({{\overrightarrow{n}}_{\left( T \right)}}=\left( 1;a;b \right)\) là 1 VTPT của mặt phẳng (T) \(\Rightarrow {{\overrightarrow{n}}_{\left( T \right)}}.{{\overrightarrow{u}}_{\left( \Delta  \right)}}=0\)

+) Mặt phẳng (T) và (R) tạo với nhau một góc \(\alpha \) có \(\cos \alpha =\frac{23}{\sqrt{679}}\) nên \(\left| \cos \left( {{\overrightarrow{n}}_{\left( T \right)}};{{\overrightarrow{n}}_{\left( R \right)}} \right) \right|=\cos \alpha \)

Xem lời giải

Lời giải của Tự Học 365

Giao tuyến của (P) và (Q) là tập hợp tất cả các điểm thỏa mãn hệ phương trình \(\begin{array}{l}\left\{ \begin{array}{l}x + y - 3z + 1 = 0\\2x + 3y + z - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x + 2y - 6z + 2 = 0\\2x + 3y + z - 1 = 0\end{array} \right.\\ \Rightarrow y + 7z - 3 = 0 \Rightarrow \left\{ \begin{array}{l}x =  - 4 + 10t\\y = 3 - 7t\\z = t\end{array} \right.\,\,\,\,\left( \Delta  \right) \\ \Rightarrow {\overrightarrow u _{\left( \Delta  \right)}} = \left( {10; - 7;1} \right)\\\left( T \right) \supset \Delta  \Rightarrow {\overrightarrow n _{\left( T \right)}} \bot {\overrightarrow u _{\left( \Delta  \right)}} \Rightarrow {\overrightarrow n _{\left( T \right)}}.{\overrightarrow u _{\left( \Delta  \right)}} = 0\end{array}\)

\({{\overrightarrow{n}}_{\left( T \right)}}=\left( 1;a;b \right)\) là 1 VTPT của mặt phẳng (T) ta có: \(10-7a+b=0\Rightarrow b=7a-10\).

Mặt phẳng (R) có \({{\overrightarrow{n}}_{\left( R \right)}}=\left( 1;2;4 \right)\).

Mặt phẳng (T) và (R) tạo với nhau một góc \(\alpha \) có \(\cos \alpha =\frac{23}{\sqrt{679}}\) nên

\(\begin{array}{l}\;\;\;\;\left| {\cos \left( {{{\overrightarrow n }_{\left( T \right)}};{{\overrightarrow n }_{\left( R \right)}}} \right)} \right| = \cos \alpha  = \frac{{23}}{{\sqrt {679} }}\\ \Rightarrow \left| {\frac{{1 + 2a + 4b}}{{\sqrt {21} .\sqrt {1 + {a^2} + {b^2}} }}} \right| = \frac{{23}}{{\sqrt {679} }}\\ \Leftrightarrow \left| {\frac{{1 + 2a + 4\left( {7a - 10} \right)}}{{\sqrt {21} .\sqrt {1 + {a^2} + {{\left( {7a - 10} \right)}^2}} }}} \right| = \frac{{23}}{{\sqrt {679} }}\\ \Leftrightarrow \left| {\frac{{30a - 39}}{{\sqrt {21} .\sqrt {50{a^2} - 140a + 101} }}} \right| = \frac{{23}}{{\sqrt {679} }}\\ \Leftrightarrow \frac{{{{\left( {30a - 39} \right)}^2}}}{{21\left( {50{a^2} - 140a + 101} \right)}} = \frac{{529}}{{679}}\end{array}\)

\(\begin{array}{l} \Leftrightarrow 679\left( {900{a^2} - 2340a + 1521} \right) = 11109\left( {50{a^2} - 140a + 101} \right)\\ \Leftrightarrow \left[ \begin{array}{l}a =  - 1\\a = \frac{{85}}{{53}}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a =  - 1\\b =  - 17\end{array} \right.\\\left\{ \begin{array}{l}a = \frac{{85}}{{53}}\\b = \frac{{65}}{{53}}\end{array} \right.\end{array} \right. \Rightarrow \left[ \begin{array}{l}\left( T \right):x - y - 17z + {d_1} = 0\\\left( T \right):\,\,53x + 85y + 65z + {d_2} = 0\end{array} \right.\end{array}\)

Lấy \(M\left( -4;3;0 \right)\in \left( \Delta  \right)\Rightarrow M\in \left( T \right)\), thay vào ta có : \(\left[ \begin{array}{l}\left( T \right):x - y - 17z + 7 = 0\\\left( T \right):\,\,53x + 85y + 65z - 43 = 0\end{array} \right.\)

Đáp án cần chọn là: d

Toán Lớp 12