Câu 37213 - Tự Học 365
Câu hỏi Thông hiểu

Trong không gian với hệ trục tọa độ Oxyz, cho 2 điểm \(A(2;1;0),\,\,B(1;-1;3)\). Mặt phẳng qua AB và vuông góc với mặt phẳng (P): \(x+3y-2z-1=0\) có phương trình là


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Cho \(\overrightarrow{{{u}_{1}}},\overrightarrow{{{u}_{2}}}\) là cặp vectơ chỉ phương của mặt phẳng \(\left( \alpha  \right)\), khi đó \(\overrightarrow{n}=\left[ \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right]\) là một vectơ pháp tuyến của \(\left( \alpha  \right)\).

Xem lời giải

Lời giải của Tự Học 365

Gọi mặt phẳng cần tìm là \(\left( \alpha  \right)\).

(P): \(x+3y-2z-1=0\) có một VTPT \(\overrightarrow{{{n}_{(P)}}}\left( 1;3;-2 \right)=\overrightarrow{{{u}_{1}}}\). Vì \(\left( \alpha  \right)\bot (P)\Rightarrow {{\overrightarrow{n}}_{\left( \alpha  \right)}}\bot {{\overrightarrow{n}}_{\left( P \right)}}\)

\(AB\subset \left( \alpha  \right)\Rightarrow {{\overrightarrow{n}}_{\left( \alpha  \right)}}\bot \overrightarrow{AB}=\left( -1;-2;3 \right)\)

Khi đó, \(\left( \alpha  \right)\)có một vectơ pháp tuyến là: \(\overrightarrow{n}=\left[ \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right]=(5;-1;1)\)

Phương trình \(\left( \alpha  \right)\): \(5.(x-2)-1.(y-1)+1.(z-0)=0\Leftrightarrow 5x-y+z-9=0\)

Đáp án cần chọn là: a

Toán Lớp 12