Trong không gian \(Oxyz\) cho điểm \(M\left( {2;1;5} \right)\). Mặt phẳng \((P)\) đi qua điểm \(M\) và cắt các trục \(Ox,Oy,Oz\) lần lượt tại các điểm \(A,B,C\) sao cho \(M\) là trực tâm của tam giác \(ABC.\) Tính khoảng cách từ điểm \(I\left( {1;2;3} \right)\) đến mặt phẳng \((P)\).
Phương pháp giải
Tứ diện vuông O.ABC với OA, OB, OC đôi một vuông góc và H là trực tâm của tam giác ABC thì OH vuông với với mặt phẳng (ABC)
Lời giải của Tự Học 365
Vì \(M\) là trực tâm của tam giác \(ABC\)\( \Rightarrow \,\,OM \bot \left( {ABC} \right) \Rightarrow \,\,{\vec n_{\left( {ABC} \right)}} = \overrightarrow {OM} = \left( {2;1;5} \right)\)
Suy ra phương trình mặt phẳng \(\left( {ABC} \right)\) là \(2\left( {x - 2} \right) + y - 1 + 5\left( {z - 5} \right) = 0 \Leftrightarrow 2x + y + 5z - 30 = 0.\)
Khoảng cách từ điểm \(I\left( {1;2;3} \right)\) đến mặt phẳng (P) là \(d\left( {I;\left( P \right)} \right) = \frac{{\left| {2 + 2 + 15 - 30} \right|}}{{\sqrt {{2^2} + {1^2} + {5^2}} }} = \frac{{11}}{{\sqrt {30} }} = \frac{{11\sqrt {30} }}{{30}}.\)
Đáp án cần chọn là: d
Toán Lớp 12