Viết phương trình mặt phẳng $\left( P \right)$ song song với mặt phẳng $\left( Q \right):x + y - z - 2 = 0$ và cách $\left( Q \right)$ một khoảng là \(2\sqrt 3 \) .
Phương pháp giải
- Gọi phương trình mặt phẳng \(\left( P \right)\) ở dạng tổng quát với chú ý $\left( P \right)//\left( Q \right) \Rightarrow \overrightarrow {{n_P}} = k.\overrightarrow {{n_Q}} $
- Tìm một điểm \(A\) thuộc mặt phẳng \(\left( Q \right)\) và viết công thức khoảng cách \(d\left( {A,\left( Q \right)} \right)\) và tìm
Lời giải của Tự Học 365
Vì $\left( P \right)$ song song với $\left( Q \right)$ nên $\left( P \right):x + y - z + c = 0$ với \(c e - 2\) .
Chọn $A\left( {2,0,0} \right)$ thuộc $\left( Q \right)$ ta có
\(d\left( {(P),(Q)} \right) = d\left( {A,(P)} \right) = \dfrac{{|2 + c|}}{{\sqrt 3 }} = 2\sqrt 3 \Leftrightarrow |2 + c| = 6\).
Suy ra $c = 4$ hoặc $c = - 8$.
Đáp án cần chọn là: a
Toán Lớp 12