Câu 37207 - Tự Học 365
Câu hỏi Thông hiểu

 Trong không gian với hệ tọa độ \(Oxyz,\) cho hai mặt phẳng \(\left( P \right):3x+y+z-5=0\) và \(\left( Q \right):x+2y+z-4=0.\) Khi đó, giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\) có phương trình là 


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Ứng dụng tích có hướng để tìm vectơ chỉ phương của đường thẳng giao tuyến và giải hệ phương trình để tìm tọa độ giao điểm của hai mặt phẳng

Xem lời giải

Lời giải của Tự Học 365

Ta có : \(\overrightarrow{{{n}_{\left( P \right)}}}=\left( 3;\ 1;\ 1 \right),\ \ \overrightarrow{{{n}_{\left( Q \right)}}}=\left( 1;\ 2;\ 1 \right).\)

Gọi \(d\) là giao tuyến của \(\left( P \right)\) và \(\left( Q \right).\)

Ta có \(\left\{ \begin{align} & {{{\vec{u}}}_{d}}\bot {{{\vec{n}}}_{\left( P \right)}} \\ & {{{\vec{u}}}_{d}}\bot {{{\vec{n}}}_{\left( Q \right)}} \\ \end{align} \right.\Rightarrow \,\,{{\vec{u}}_{d}}=\left[ {{{\vec{n}}}_{\left( P \right)}};{{{\vec{n}}}_{\left( Q \right)}} \right]=\)\(\left( -\,1;-\,2;5 \right)\)

Xét hệ \(\left\{ \begin{align} & 3x+y+z-5=0 \\ & x+2y+z-4=0 \\ \end{align} \right.,\)

Chọn \(x = 0 \Rightarrow \,\,\left\{ \begin{array}{l}
y + z = 5\\
2y + z = 4
\end{array} \right. \Leftrightarrow \,\,\left\{ \begin{array}{l}
y = - \,1\\
z = 6
\end{array} \right. \Rightarrow M\left( {0; - 1;6} \right) \in d.\)

Vậy phương trình đường thẳng cần tìm là \(d:\left\{ \begin{align} & x=t \\ & y=-\,1+2t \\ & z=6-5t \\ \end{align} \right..\)

Đáp án cần chọn là: d

Toán Lớp 12