Trong không gian với hệ tọa độ $Oxyz$ , cho đường thẳng \(d:\left\{ \begin{array}{l}x = t\\y = - 1\\z = - t\end{array} \right.\) và 2 mặt phẳng $(P)$ và $(Q)$ lần lượt có phương trình $x + 2y + 2z + 3 = 0;x + 2y + 2z + 7 = 0$. Viết phương trình mặt cầu $(S)$ có tâm$I$ thuộc đường thẳng $d$, tiếp xúc với hai mặt phẳng $(P)$ và $(Q)$.
Phương pháp giải
Mặt cầu tiếp xúc với mặt phẳng khi và chỉ khi khoảng cách từ tâm mặt cầu đến mặt phẳng bằng bán kính mặt cầu.
Lời giải của Tự Học 365
Ta có
$\begin{array}{l}I \in d \Rightarrow I\left( {t; - 1; - t} \right)\\ \Rightarrow d\left( {I,\left( P \right)} \right) = d\left( {I,\left( Q \right)} \right) \Leftrightarrow \dfrac{{\left| {t - 2 - 2t + 3} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }} = \dfrac{{\left| {t - 2 - 2t + 7} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }} \\ \Leftrightarrow \left| { - t + 1} \right| = \left| { - t + 5} \right| \Leftrightarrow t = 3\\ \Rightarrow I\left( {3; - 1; - 3} \right)\\ \Rightarrow R = \dfrac{{\left| { - 3 + 1} \right|}}{{\sqrt 9 }} = \dfrac{2}{3}\\ \Rightarrow (S):{\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 3} \right)^2} = \dfrac{4}{9}\end{array}$
Đáp án cần chọn là: b
Toán Lớp 12