Cho \(a > 0\), \(b > 0\) thỏa mãn \({a^2} + 4{b^2} = 5ab\). Khẳng định nào sau đây đúng?
Phương pháp giải
Cộng cả hai vế của đẳng thức bài cho với \(4ab\) và lấy logarit cơ số \(10\) hai vế.
Lời giải của Tự Học 365
Ta có: \({a^2} + 4{b^2} = 5ab \Leftrightarrow {a^2} + 4ab + 4{b^2} = 9ab \Leftrightarrow {\left( {a + 2b} \right)^2} = 9ab\).
Logarit cơ số \(10\) hai vế ta được:
\(\begin{array}{l}\log {\left( {a + 2b} \right)^2} = \log \left( {9ab} \right) \Leftrightarrow 2\log \left( {a + 2b} \right) = \log 9 + \log a + \log b\\ \Leftrightarrow 2\log \left( {a + 2b} \right) = 2\log 3 + \log a + \log b \Leftrightarrow 2\left( {\log \left( {a + 2b} \right) - \log 3} \right) = \log a + \log b\\ \Leftrightarrow \log \dfrac{{a + 2b}}{3} = \dfrac{{\log a + \log b}}{2}\end{array}\)
Đáp án cần chọn là: c
Toán Lớp 12