Câu 37222 - Tự Học 365
Câu hỏi Vận dụng

Đơn giản biểu thức $P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right)\,\,\,\,(a,b > 0)$ ta được:


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Sử dụng các công thức lũy thừa với số mũ hữu tỉ \({a^m}.{a^n} = {a^{m + n}}\).

Xem lời giải

Lời giải của Tự Học 365

Ta có:

$P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right) = \left( {{a^{\dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right) = a - b$

Vậy  \(P = a - b\).

Đáp án cần chọn là: c

Toán Lớp 12