Trong mặt phẳng tọa độ \(Oxy,\) cho tam giác \(ABC\) có \(A\left( {4;3} \right),\,\,B\left( {2;7} \right)\) và \(C\left( { - \,3; - \,8} \right).\) Tìm toạ độ chân đường cao \(A'\) kẻ từ đỉnh \(A\) xuống cạnh \(BC.\)
Phương pháp giải
\(A'\) là hình chiếu của \(A\) trên \(BC\) nếu \(AA' \bot BC\) và \(B,A',C\) thẳng hàng.
Lời giải của Tự Học 365
Gọi \(A'\left( {x;y} \right)\). Ta có \(\left\{ \begin{array}{l}\overrightarrow {AA'} = \left( {x - 4;y - 3} \right)\\\overrightarrow {BC} = \left( { - \,5; - \,15} \right)\\\overrightarrow {BA'} = \left( {x - 2;y - 7} \right)\end{array} \right..\)
Từ giả thiết, ta có \(A'\) là hình chiếu của \(A\) trên \(BC\) nếu \(AA' \bot BC\) và \(B,A',C\) thẳng hàng
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AA'} .\overrightarrow {BC} = 0}&{\left( 1 \right)}\\{\overrightarrow {BA'} = k\overrightarrow {BC} }&{\left( 2 \right)}\end{array}} \right.\)
\( \bullet \) \(\left( 1 \right) \Leftrightarrow - \,5\left( {x - 4} \right) - 15\left( {y - 3} \right) = 0\) \( \Leftrightarrow x + 3y = 13\)
\( \bullet \) \(\left( 2 \right) \Leftrightarrow \dfrac{{x - 2}}{{ - 5}} = \dfrac{{y - 7}}{{ - 15}}\)\( \Leftrightarrow 3x - y = - 1\)
Giải hệ \(\left\{ \begin{array}{l}x + 3y = 13\\3x - y = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 4\end{array} \right.\) \( \Rightarrow A'\left( {1;4} \right)\)
Đáp án cần chọn là: c
Toán Lớp 12