Câu 37229 - Tự Học 365
Câu hỏi Vận dụng

Bất phương trình ${m^2}\left( {x - 1} \right) \ge 9x + 3m$ nghiệm đúng với mọi \(x\) khi


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Biện luận bất phương trình và suy ra điều kiện của \(m\) để bất phương trình nghiệm đúng với mọi \(x \in \mathbb{R}\).

Xem lời giải

Lời giải của Tự Học 365

Bất phương trình tương đương với $\left( {{m^2} - 9} \right)x \ge {m^2} + 3m.$

Dễ dàng thấy nếu ${m^2} - 9 e 0 \Leftrightarrow m e  \pm 3$ thì bất phương trình không thể có nghiệm đúng \(\forall x \in \mathbb{R}\)

Với \(m = 3\) bất phương trình trở thành \(0x > 18\): vô nghiệm

Với \(m =  - 3\) bất phương trình trở thành \(0x \ge 0\): nghiệm đúng với mọi $x \in \mathbb{R}.$

Vậy giá trị cần tìm là \(m =  - 3.\)

Đáp án cần chọn là: b

Toán Lớp 12