Câu 37211 - Tự Học 365
Câu hỏi Vận dụng

Tìm số nghiệm nguyên của bất phương trình \({\left( {\dfrac{1}{5}} \right)^{{x^2} - 2x}} \ge \dfrac{1}{{125}}\)


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Giải bất phương trình mũ với \(0 < a < 1\) thì ${a^{f\left( x \right)}} \ge {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) \le g\left( x \right)$ 

Xem lời giải

Lời giải của Tự Học 365

Ta có

${\left( {\dfrac{1}{5}} \right)^{{x^2} - 2{\rm{x}}}} \ge \dfrac{1}{{125}} \Leftrightarrow {\left( {\dfrac{1}{5}} \right)^{{x^2} - 2{\rm{x}}}} \ge {\left( {\dfrac{1}{5}} \right)^3} $

$\Leftrightarrow {x^2} - 2{\rm{x}} \le 3 \Leftrightarrow {x^2} - 2{\rm{x - 3}} \le {\rm{0}} \Leftrightarrow {\rm{ - 1}} \le {\rm{x}} \le {\rm{3}}$

Số nghiệm nguyên là $5$.

Đáp án cần chọn là: d

Toán Lớp 12