Câu 37219 - Tự Học 365
Câu hỏi Thông hiểu

Tìm tập nghiệm của bất phương trình \({5^x} < 7 - 2x\)  


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Sử dụng phương pháp hàm số:

- Tìm điều kiện của \(x\).

- Xét tính đồng biến, nghịch biến của hàm số trên khoảng, đoạn tìm được ở trên.

Xem lời giải

Lời giải của Tự Học 365

Ta có \({5^x} > 0\) với $\forall x$ nên $\left( {7 - 2x} \right) > 0 \Leftrightarrow x < \dfrac{7}{2}$

Xét hàm \(f\left( x \right) = {5^x} + 2x - 7\)  có \(f'\left( x \right) = {5^x}\ln 5 + 2 > 0,\forall x \in \left( { - \infty ;\dfrac{7}{2}} \right)\)

Do đó hàm số đồng biến trên \(\left( { - \infty ;\dfrac{7}{2}} \right)\), hay \(f\left( x \right) < f\left( 1 \right) = 0,\forall x < 1\).

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ;1} \right)\).

Đáp án cần chọn là: b

Toán Lớp 12