Câu 37224 - Tự Học 365
Câu hỏi Thông hiểu

Cho bất phương trình \({x^2} - 8x + 7 \ge 0\). Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

- Lập bảng xét dấu vế trái bất phương trình và kết luận tập nghiệm.

- Đối chiếu với từng đáp án để tìm tập hợp có chứa phần tử không là nghiệm của bất phương trình.

Xem lời giải

Lời giải của Tự Học 365

Ta có $f\left( x \right) = {x^2} - 8x + 7 = 0\, \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 7\end{array} \right.$.

Bảng xét dấu

    

Dựa vào bảng xét dấu \(f\left( x \right) \ge 0\, \Leftrightarrow \,\left[ \begin{array}{l}x \le 1\\x \ge 7\end{array} \right.\).

Tập nghiệm của bất phương trình là \(S = \left( { - \infty ;1} \right] \cup \,\left[ {7; + \infty } \right)\).

Vì \(\dfrac{{13}}{2} \in \left[ {6; + \infty } \right)\) và \(\dfrac{{13}}{2} otin S\) nên \(\left[ {6; + \infty } \right)\) thỏa yêu cầu bài toán.

Đáp án cần chọn là: d

Toán Lớp 12