Câu 37212 - Tự Học 365
Câu hỏi Thông hiểu

Cho hàm số \(f\left( x \right) = \sqrt {1 - {x^2}} \). Kết luận nào sau đây đúng?


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

- Sử dụng đánh giá \({x^2} \ge 0\) để tìm GTLN của \(f\left( x \right)\).

- Sử dụng đánh giá \(\sqrt A  \ge 0\) để tìm GTNN của \(f\left( x \right)\)

Xem lời giải

Lời giải của Tự Học 365

Vì $x^2\ge 0$ nên $1-x^2\le 1$, ngoài ra $\sqrt{1-x^2}\ge 0,\forall x\in [-1;1]$.

Do đó: \(f\left( x \right) \ge 0\) và \(f\left( 1 \right) = 0\); \(f\left( x \right) \le 1\) và \(f\left( 0 \right) = 1\).

Vậy hàm số \(f\left( x \right)\) có giá trị nhỏ nhất bằng \(0\) và giá trị lớn nhất bằng \(1\).

Đáp án cần chọn là: c

Toán Lớp 12