Giá trị nhỏ nhất của biểu thức \({x^2} + 3\left| x \right|\) với \(x \in \mathbb{R}\) là:
Phương pháp giải
Đánh giá biểu thức dựa vào các tình chất: \({x^2} \ge 0,\left| x \right| \ge 0\) với \(\forall x \in R\).
Lời giải của Tự Học 365
Ta có: \(\left. \begin{array}{l}{x^2} \ge 0\\\left| x \right| \ge 0\end{array} \right\}\)\( \Rightarrow {x^2} + 3\left| x \right| \ge 0\).
Dấu “=” xảy ra khi \({x^2} = \left| x \right| = 0 \Leftrightarrow x = 0\)
Đáp án cần chọn là: c
Toán Lớp 12