Câu 37204 - Tự Học 365
Câu hỏi Vận dụng

Trong không gian với hệ trục tọa độ $Oxyz$, cho hình hộp $ABCD.A'B'C'D'$ biết $A\left( {1;0;1} \right)$, $~B\left( 2;1;2 \right)$,  $D\left( {1; - 1;1} \right)$ và \(C'(4;5; - 5)\).  Khi đó, thể tích của hình hộp đó là:


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

- Sử dụng công thức tính tọa độ vecto:

Cho hai điểm \(A({a_1};{a_2};{a_3})\) và \(B({b_1};{b_2};{b_3})\) ta có: \(\overrightarrow {AB}  = ({b_1} - {a_1};{b_2} - {a_2};{b_3} - {a_3})\)

- Cho hai vecto \(\overrightarrow {AB}  = ({a_1};{a_2};{a_3})\)  và \(\overrightarrow {CD}  = ({b_1};{b_2};{b_3})\). Khi đó: \(\overrightarrow {AB}  = \overrightarrow {CD}  \Leftrightarrow \left\{ \begin{array}{l}{a_1} = {b_1}\\{a_2} = {b_2}\\{a_3} = {b_3}\end{array} \right.\)  

- Sử dụng công thức tính vô hướng

Cho hai vecto \(\overrightarrow {AB}  = ({a_1};{a_2};{a_3})\) và \(\overrightarrow {CD}  = ({b_1};{b_2};{b_3})\)ta có: \(\overrightarrow {AB} .\overrightarrow {CD}  = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)

- Sử dụng công thức tính tích có hướng:

Cho hai vecto \(\overrightarrow {AB}  = ({a_1};{a_2};{a_3})\) và \(\overrightarrow {CD}  = ({b_1};{b_2};{b_3})\)ta có:

\(\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} \right)\)

- Sử dụng công thức tính thể tích khối hộp

                           \({V_{ABCD.A'B'C'D}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right]{\rm{.}}\overrightarrow {AA'} } \right|\)

Xem lời giải

Lời giải của Tự Học 365

Ta có \(\overrightarrow {AB}  = (1;1;1),\overrightarrow {AD}  = (0; - 1;0)\)

$ABCD.A'B'C'D'$ là hình hộp \( \Rightarrow ABCD\) là hình bình hành. Khi đó ta có \(\overrightarrow {AD}  = \overrightarrow {BC} \)

Giả sử \(C(x;y;z)\) . Ta có: \(\overrightarrow {BC}  = (x - 2;y - 1;z - 2)\)

 \(\overrightarrow {AD}  = \overrightarrow {BC}  \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 0\\y - 1 =  - 1\\z - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 0\\z = 2\end{array} \right. \Rightarrow C(2;0;2)\)

Ta có \(\overrightarrow {AA'}  = \overrightarrow {CC'}  = \left( {2;5; - 7} \right),\left[ {\overrightarrow {AB} {\rm{,}}\overrightarrow {AD} } \right]{\rm{ = }}(1;0; - 1)\)

Theo công thức tính thể tích ta có

\({V_{ABCD.A'B'C'D}} = \left| {\left[ {\overrightarrow {AB} {\rm{,}}\overrightarrow {AD} } \right]{\rm{.}}\overrightarrow {AA'} } \right| = \left| {1.2 + 0.5 + \left( { - 1} \right).\left( { - 7} \right)} \right| = 9\)

Đáp án cần chọn là: a

Toán Lớp 12