Trong không gian với hệ tọa độ \(Oxyz\), cho tam giác \(ABC\). Tập hợp các điểm \(M\) thỏa mãn \(\left[ {\left( {\overrightarrow {MA} + \overrightarrow {MB} } \right),\overrightarrow {AC} } \right] = \overrightarrow 0 \) là:
Phương pháp giải
Gọi \(I\) là trung điểm của \(AB\), sử dụng tính chất trung điểm và tích có hướng để suy ra tập hợp điểm thỏa mãn.
Lời giải của Tự Học 365
Gọi \(I\) là trung điểm của \(AB\), ta có \(\overrightarrow {MA} + \overrightarrow {MB} = 2\overrightarrow {MI} \).
Khi đó \(\left[ {\left( {\overrightarrow {MA} + \overrightarrow {MB} } \right),\overrightarrow {AC} } \right] = \overrightarrow 0 \)\( \Leftrightarrow \left[ {2\overrightarrow {MI} ,\overrightarrow {AC} } \right] = \overrightarrow 0 \).
Suy ra \(\overrightarrow {MI} \) cùng phương với \(\overrightarrow {AC} \).
Đáp án cần chọn là: b
Toán Lớp 12