Trong không gian với hệ tọa độ \(Oxyz\), cho sáu điểm \(A\left( {1;2;3} \right)\), \(B\left( {2; - 1;1} \right)\), \(C\left( {3;3; - 3} \right)\), \(A',\,\,B',\,\,C'\) thỏa mãn \(\overrightarrow {A'A} + \overrightarrow {B'B} + \overrightarrow {C'C} = \overrightarrow 0 \). Nếu \(G'\) là trọng tâm tam giác \(A'B'C'\) thì \(G'\) có tọa độ là:
Phương pháp giải
Nhận xét trọng tâm của hai tam giác \(ABC\) và \(A'B'C'\) rồi suy ra kết luận.
Lời giải của Tự Học 365
Gọi \(G'\left( {x;y;z} \right)\) là trọng tâm của tam giác \(A'B'C'\).
Ta có \(\overrightarrow {G'A'} + \overrightarrow {G'B'} + \overrightarrow {G'C'} = \overrightarrow 0 \Leftrightarrow \left( {\overrightarrow {G'A} + \overrightarrow {AA'} } \right) + \left( {\overrightarrow {G'B} + \overrightarrow {BB'} } \right) + \left( {\overrightarrow {G'C} + \overrightarrow {CC'} } \right) = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {G'A} + \overrightarrow {G'B} + \overrightarrow {G'C} = \overrightarrow {A'A} + \overrightarrow {B'B} + \overrightarrow {C'C} = \overrightarrow 0 \).
Suy ra \(G'\) cũng là trọng tâm của tam giác \(ABC\) nên có tọa độ \(\left( {2;\dfrac{4}{3};\dfrac{1}{3}} \right).\)
Đáp án cần chọn là: c
Toán Lớp 12