Câu 37203 - Tự Học 365
Câu hỏi Nhận biết

Xác định số phức \(z\) thỏa mãn \(|z - 2 - 2i| = \sqrt 2 \) mà \(|z|\) đạt giá trị lớn nhất.


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Áp dụng bất đẳng thức chứa dấu giá trị tuyệt đối: \(\left| A \right| - \left| B \right| \le \left| {A \pm B} \right| \le \left| A \right| + \left| B \right|\)

Xem lời giải

Lời giải của Tự Học 365

Sử dụng bất đẳng thức chứa dấu giá trị tuyệt đối ta có:

\(\sqrt 2  = |z - 2 - 2i| \ge |z| - | - 2 - 2i| = |z| - 2\sqrt 2  \Rightarrow |z| \le 3\sqrt 2 \)

Suy ra \(\max |z| = 3\sqrt 2 \).

Kiểm tra các đáp án đã cho chỉ có đáp án C thỏa mãn.

Đáp án cần chọn là: c

Toán Lớp 12