Câu 37203 - Tự Học 365
Câu hỏi Vận dụng

Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{4x - 3}}{{2x + 1}}\) cùng với hai tiệm cận tạo thành một tam giác có diện tích bằng


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

+ Chọn 1 điểm thuộc đồ thị hàm số \(y = f\left( x \right)\)

+ Viết phương trình tiếp tuyến

+ Tính diện tích tam giác cần tìm

Xem lời giải

Lời giải của Tự Học 365

Chọn \(M\left( { - 1;7} \right)\) thuộc đồ thị hàm số

Có \(y' = \dfrac{{10}}{{{{\left( {2x + 1} \right)}^2}}};y'\left( { - 1} \right) = 10\)

Phương trình tiếp tuyến tại \(M\) : \(y = 10\left( {x + 1} \right) + 7 \Leftrightarrow y = 10x + 17\)

Phương trình các tiệm cận: \(x =  - \dfrac{1}{2};y = 2\)

Tam giác \(IAB\) vuông tại \(I\) tạo bởi \(3\)  đường trên có \(3\)  đỉnh: \(I = \left( { - \dfrac{1}{2};2} \right);A\left( { - \dfrac{1}{2};12} \right);B\left( { - \dfrac{3}{2};2} \right)\) và có diện tích: \(S = \dfrac{1}{2}IA.IB = \dfrac{1}{2}.10.1 = 5\)

Đáp án cần chọn là: c

Toán Lớp 12