Số tiếp tuyến của đồ thị hàm số \(y=\frac{3x-1}{x-3}\) song song với đường thẳng \(y=-\,2x+1\) là
Phương pháp giải
Lập phương trình tiếp tuyến của đồ thị hàm số, sử dụng điều kiện để hai đường thẳng song song để xác định số tiếp tuyến cần tìm.
Lời giải của Tự Học 365
Gọi \(M\left( a;y\left( a \right) \right)\in \left( C \right),\) có \({y}'\left( a \right)=-\frac{8}{{{\left( a-3 \right)}^{2}}}\)\(\Rightarrow \) Phương trình tiếp tuyến của \(\left( C \right)\) tại \(M\) là \(y-y\left( a \right)={y}'\left( a \right)\left( x-a \right)\Leftrightarrow y=-\frac{8}{{{\left( a-3 \right)}^{2}}}\left( x-a \right)+\frac{3a-1}{a-3}\,\,\left( d \right).\)
Vì \(\left( d \right)\) song song với đường thẳng \(y=-\,2x+1\) nên suy ra \(-\frac{8}{{{\left( a-3 \right)}^{2}}}=-\,2\Leftrightarrow {{\left( a-3 \right)}^{2}}=4\Leftrightarrow \left[ \begin{align} & a=5 \\ & a=1 \\\end{align} \right..\)
Khi đó, phương trình\(\left[ \begin{array}{l}
y = - \,2\left( {x - 5} \right) + 7\\
y = - \,2\left( {x - 1} \right) - 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
y = - \,2x + 17\\
y = - \,2x + 1 \, \, (ktm)
\end{array} \right..\)
Đáp án cần chọn là: d
Toán Lớp 12