Câu 37209 - Tự Học 365
Câu hỏi Vận dụng

Cho hàm số \(y = \dfrac{1}{4}{x^4} - 2{x^2} + 2\). Hỏi đồ thị hàm số đã cho có bao nhiêu tiếp tuyến song song với trục hoành?


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Tiếp tuyến song song với trục hoành \( \Rightarrow f'\left( x \right) = 0\).

- Tính \(y'\) và giải phương trình \(y' = 0\) suy ra các tiếp điểm.

- Viết phương trình tiếp tuyến của đồ thị hàm số tại các điểm trên và kết luận.

Xem lời giải

Lời giải của Tự Học 365

Ta có : \(y' = {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 2\\x = 2 \Rightarrow y =  - 2\\x =  - 2 \Rightarrow y =  - 2\end{array} \right.\)

Phương trình tiếp tuyến tại điểm \(\left( {0;2} \right)\) có phương trình \(y = 0\left( {x - 0} \right) + 2 \Leftrightarrow y = 2\).

Phương trình tiếp tuyến tại điểm \(\left( {2; - 2} \right)\) có phương trình \(y = 0\left( {x - 2} \right) - 2 \Leftrightarrow y =  - 2\).

Phương trình tiếp tuyến tại điểm \(\left( { - 2; - 2} \right)\) có phương trình \(y = 0\left( {x + 2} \right) - 2 \Leftrightarrow y =  - 2\).

Vậy có hai tiếp tuyến cần tìm là \(y = 2\) và \(y =  - 2\).

Đáp án cần chọn là: c

Toán Lớp 12