Câu 37203 - Tự Học 365
Câu hỏi Vận dụng

Cho hàm số \(y=\frac{x-1}{x+2}\left( C \right)\). Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của (C) với trục \(Ox\) là:


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

+) Tính \({y}'\).

+) Tìm tọa độ tiếp điểm \(M\left( {{x}_{0}},{{y}_{0}} \right)\).

+) Viết phương trình tiếp tuyến tại \(M\left( {{x}_{0}},{{y}_{0}} \right)\) có dạng \(y={f}'\left( {{x}_{0}} \right)\left( x-{{x}_{0}} \right)+{{y}_{0}}\).

Xem lời giải

Lời giải của Tự Học 365

Ta có \({y}'=\frac{3}{{{\left( x+2 \right)}^{2}}},\,\left( x e -2 \right)\).

Hoành độ tiếp điểm \(M\) là nghiệm của phương trình \(\frac{x-1}{x+2}=0\) \(\Leftrightarrow x=1\) \(\Rightarrow M\left( 1;0 \right)\).

Phương trình tiếp tuyến tại \(M\) có dạng  \(y={y}'\left( 1 \right)\left( x-1 \right)+0\Leftrightarrow y=\frac{1}{3}\left( x-1 \right)\Leftrightarrow y=\frac{1}{3}x-\frac{1}{3}\).

Đáp án cần chọn là: a

Toán Lớp 12